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Migration with the full acoustic wave equation 

Dan D. Kosloff* and Edip Baysah 

ABSTRACT 

Conventional finite-difference migration has relied on 
one-way wave equations which allow energy to propagate 
only downward. Although generally reliable, such equa- 
tions may not give accurate migration when the structures 
have strong lateral velocity variations or steep dips. The 
present study examined an alternative approach based on 
the full acoustic wave equation. The migration algorithm 
which developed from this equation was tested against syn- 
thetic data and against physical model data. The results 
indicated that such a scheme gives accurate migration for 
complicated structures. 

INTRODUCTION 

During the last decade, finite-difference migration has been 
dominated by the approach of Clacrbout (I 972). His method uses 
one-way wave equations which allow energy to propagate only 
downward. Although successful in many situations, the method is 
limited by the assumptions made in deriving the one-way wave 
equations. In particular, it is assumed that spatial derivatives of 
the velocity field can be ignored (Claerbout, 1972, 1976; Stolt. 
1978; Gazdag, 1980: Berkhout and Palthe. 1979). However, such 
terms are significant in the presence of strong velocity contrasts. 
Furthermore, most finite-difference migration schemes which use 
the one-way wave equation contain a limit on the maximum dip 
of events which can be migrated properly. One-way wave equa- 
tions arc also incapable by nature of producing correct amplitudes 
(Berkhout and Palthe, 1979; Larncr et al. 1981). The change in 
amplitude for smooth and discontinuous velocity variations is dis- 
cussed in the Appendix for the one-dimensional cast. This bc- 
comes important in the construction of before stack migration 
methods. 

The present study tackled the problem of finding a migration 
scheme that would eliminate the dcliciencics outlined above, offer- 
ing an improvement over conventional finite-difference migration 
algorithms. A migration scheme for stacked sections based on the 
full acoustic wave equation is introduced. Because such an equa- 
tion is directly derivable from continuum mechanics, it seemed 

likely to give accurate migration in areas with high velocity con- 
trasts and steep dips. The main limitations which would remain in 

the scheme were those associated with the conceptual model on 
which migration is based. For migration of stacked or zero-offset 
sections, this model is the so-called “exploding reflector model” 
(Loewcnthal et al, 1976) which cannot correctly account for 
multiples or for complicated wave propagation such as, for exam- 
ple, a diffraction followed by a reflection. 

Our study found that in order to implement migration based on 
the full acoustic wave equation. a number of obstacles had to be 
overcome. First, the acoustic wave equation is of second order in 
the spatial coordinates. and therefore requires two boundary con- 
ditions to initiate the depth extrapolation. On the other hand, the 
seismic data contain only one recorded field which is related either 
to the pressure or to thd vertical pressure gradients. Second, a 
means must be supplied for eliminating evanescent energy which, 
if not removed, can cause numerical solutions to grow expo- 
nentially out of bounds. These topics are dealt with in later sections. 

In the following sections we describe the numerical solution 
method developed for the migration algorithm. The scheme is 
then tested against simple synthetic examples, and against physical 
modeling data collected in the modeling tank at the Seismic 
Acoustics Laboratory at the Univ. of Houston. 

BASIC EQUATIONS 

The migration algorithm is derived in the space-frequency do- 
main, with the acoustic wave equation serving as the basis. In an 
acoustic medium with variable density and velocity, the acoustic 
wave equation reads 

where x and z arc the horizontal and vertical coordinates, P (x. Z, t) 
is the pressure field at time t, C(.r, z) is the acoustic velocity. 
and p(x, z) is the density. 

For the migration algorithm, equation (I) is Fourier transformed 
with respect to time and rewritten as a set of two coupled equa- 
tions: 
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where w is the temporal frequency, and p and ap/az represent 
the transformed pressure and vertical pressure gradient. re- 
spectively. 

Equation (2) is written consistently with the continuity con- 
ditions of continuum mechanics which require that both the 
tractions and the displacements remain continuous across all 
possible interfaces in the medium. This follows because in an 
acoustic medium the tractions are equal to the pressures, and the 
accelerations are equal to (1 /p) (aP/ax) and (1 /p) (dP/dz), 
respectively. 

When the density is assumed constant throughout the medium, 
equation (2) simplifies to give 
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In the following, equation (3) will be used for simplicity. It is 
useful in practice since the density usually varies less than the 
velocity in geologic structures, and is often not known accurately. 
However, the constant density assumption is not fundamental to 
the present migration scheme. 

The depth extrapolation in the migration is based on equation 
(3). For stacked or zero-offset time sections, x and z represent 
midpoint coordinates and C(x, z) is equal to half the true acoustic 
velocity in the medium (for further discussion, see Loewenthal 
et al, 1976; Stolt, 1978). The input section for the migration is 
given by P(x, z = 0, t) and the migrated section is given by 
P (x, z, t = 0) (Loewenthal et al, 1976). The integration of equa- 
tion (3) is carried out for each frequency component separately. 
At each depth level z, components of the vector 

P (x, z, 0) 

[ I aF 

ilr( 
x, Z, 0) 

are stepped down to the next depth level z + AZ for all x. The 
process is initiated at the surface after a specification of p (x, 0, w) 
and (ap/az)(x, 0, w). The final migrated section P(x, z, 0) is 
obtained after ? (x, z, w) has been calculated for all o by summing 
over all w (Gazdag, 1980): 

P(x, z, 0) = c P(x, z, w). (4) 
w 

METHOD OF EXTRAPOLATION IN DEPTH 

For the depth extrapolation, equation (3) is spatially discretized. 
Let N, be the number of seismic traces and Ax the trace spacing. 
We denote by P(i, z, o) and (JP/az)(i, z, o) the respective 
values of the transformed pressure and transformed vertical pres- 
sure gradient at depth z, and at horizontal location x = xg + 
(i - 1)A.r. With this discretization in x, and with an appropriate 
approximation to a2P /ax’, equation (3) becomes a set of 2N, 
coupled ordinary differential equations in z for P (i, z, o) and 
(aP/az)(i, z, w), i = 1, , N, The integration in depth can 
then be carried out with standard solution techniques for ordinary 
differential equations. We used a fourth-order Runge-Kutta method 
because it is accurate and easy to implement on an array processor. 

Using the discreteed version of equation (3) requires an ap- 
proximation for a2 P/ax’. The present scheme uses a Fourier 

method to calculate this term (Kosloff and Baysal. 1982: Gazdag. 
1980). Accordingly, the pressure transforms P(i, 2. w) are spa- 
tially transformed by a fast Fourier transform (FFT) to yield 
F(K,, z. w). then multiplied by -Kt and inverse transformed to 
give (a’P/i).r’)(i. z, w), This derivative operator. unlike tinite- 
differences, is accurate to the spatial Nyquist frequency. It also 
allows easy removal of undesirable spatial wavenumber com- 
ponents such as evanescent waves. 

GENERATION OF SURFACE VALUES OF p and ai/&. 

The initiation of migration based on equation (3) requires the 
specilication of both p and a?/az on the surface. Since only one 
of these fields is recorded in practice, the remaining field must 
be generated from mathematical assumptions. 

We assume that the seismic data are given by the pressure field 
P(x, 0, t). P(x, 0. w) can then be calculated from P(x, 0. t) by 
Fourier transformation in time The values of (aP/az)(x, 0, o) 
need to be generated from P(x, 0. o) mathematically (other cases 
in which the recorded field is not the pressure can be treated by 
the same method outlined in this section). For this process we 
assume that the acoustic velocity is laterally uniform in the 
vicinity of the surface (but can be completely nonuniform every- 
where else), and that the seismic time section consists of upgoing 
energy only. The latter assumption is also used in migration 
schemes based on one-way equations (Claerbout, 1976). 

In a region in which the acoustic velocity C is constant, equa- 
tion (I) can be doubly transformed in x and f to give 

$ji wz _=- - 
dZ2 ( 1 C2 

- K: p(K,, z, w), (5) 

where F is the twice transformed pressure and K, is the horizontal 
wavenumber. The solutions to equation (5) are given by 

p(K,. z, co) = e”“-F(K,. 0, w), (6) 

with n = v\/w’/C’ - Kz. The solution (6) includes only upgoing 
waves under the convention that z increases with depth. This 
study uses only nonevanescent energy components for which 
w’/C’ > K2 r’ 

The doubly transformed pressure gradients (dF/dz)(K,, z. w) 

can be obtained from equation (6) by differentiation, 

aF 

The generated vertical pressure gradients (?J?/~z)(x, 0. o) 
on the surface are obtained from equation (7) by setting z = 0 
and by an inverse Fourier transformation with respect to x. 

The procedure for generation of a?/az on the surface is com- 
patible with assumptions used in most migration schemes. How- 
ever, other alternatives may fit the reality of the field configura- 
tion better. For example, it may be more appropriate for data 
from land surveys to set the pressures P(.x, 0, t) equal to zero 
and to assume that the recorded data are proportional to (aP/az) 
(x, 0, f). However, we did not attempt to pursue these alternatives 
in the present study. 

ELIMINATION OF EVANESCENT ENERGY 

Evanescent waves are given by the exponentially varying SOIU- 

tions of the wave equation. Although in physical reality only 
solutions which exponentially decrease with depth are present, 
in numerical algorithms the exponentially increasing solutions 
can also be generated and cause the numerical results to grow out 
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FIG. I. (a) A one-dimensional time section containing a single event. (b) Velocity model VI = 2000 miscc, V2 = 1000 misec. (c) Mi- 
grated depth section based on equation (3). (d) Migrated section after the elimination of downgoing energy at time f = 0. 

of bounds. Therefore, it is important to eliminate evanescent 
energy in implementing migration with the full acoustic wave 
equation. 

For a laterally uniform medium with a depth dependent velocity 
C(z), the evanescent solutions are defined by the relation 

K, > -!I!- 
C(z)’ 

where K, is the horizontal wavenumber and o is the temporal fre- 
quency. When the velocity field varies laterally, the identification 

of the evanescent field becomes less clear cut. In this work we 
chose_ the d&&ion 

KG+, (8) 

where C,,, is the highest velocity at the depth z. Ourexperience in- 
dicates that criterion (8) assures numerical stability. However, 
in some cases it may cause the elimination of steeply dipping 
events in low-velocity regions. In applications, a less stringent 
condition than inequality (8) may sometimes be preferable. 
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ELIMINATION OF DOWNGOING ENERGY AT time ZERO 

The conceptual basis for the migration of zero-offset data is 
the exploding reflector model (Locwenthal et al. 1976). Accord- 
ing to this model. a zero-offset time section can be generated 
directly by halving all the acoustic velocities in the medium and 
placing explosive sources on the reflecting horizons. these cx- 
plode at time zero with strengths proportional to the reflection
coefficients. The need to replace physical reality by a model 
stems from the fact that a zero-offset section cannot be obtained 

from a single shot, but rather is composed from a series of shots. 
With the exploding reflector model. the aim of migration is to 
produce the pressure at time zero in all space (Loewenthal et al. 
1976; Stolt. 1978). 

The exploding reflector model applies directly to migration 
based on onc-way wave equations since thcsc propagate only up- 
going energy. For the two-way wave equation. there is a non- 
uniqueness concerning downgoing energy. Consider the one- 
dimensional (I-D) time section in Figure la. When the velocity 

v time (set) 
+ 

.* _. 

depth (ml 

..4..... ..,.. I . .  
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FIG. 2. (a) A time section containing a single spike. (b) Velocity model VI = 2000 miscc. V? = 1000 misec. (c) Migrated section based on 

equation (3). (d) Migrated section after the elimination of downgoing energy at time t = 0. 
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FIG. 3. Spatial confguration of the wedge model. 

structure is as shown in Figure 1 b, the migrated section from the 

solution of equation (3) becomes the section shown in Figure lc. 

This section contains an upgoing event A which corresponds to 

the single event on the time section in Figure la. An additional 

event B containing downgoing energy only is also present. This 

event appears because of an inherent nonuniqucness in the con- 

ceptual model on which the migration is based. With the model, 

a surface recording alone cannot determine the amount of down- 

going energy at time t = 0. In order to determine the amount of 

downgoing energy, a set of geophones also needs to bc placed 

beneath the structure of interest. Obviously this option is not 

realizable in practice. 

Downgoing energy at time f = 0 can be eliminated from the 

depth section by filtering out components with negative vertical 

wavenumbers. When this procedure is applied to the section of 

Figure Ic, the section shown in Figure Id results. This section 

contains event A only. 

Figure 2 shows the same elimination method for a two-di- 

mensional (2-D) example. The time section in Figure 2a contains 

a single event which should give a depth section with a circular 

reflector (event A in Figure 2~). However. when the velocity is 

as in Figure 2b, an additional downgoing event B is produced on 

the depth section (Figure 2~). After the elimination procedure is 

applied, only event A remains (Figure 2d). 

The nonuniqueness associated with downgoing energy becomes 

significant only in the presence of strong velocity contrasts. In 

many casts elimination of this energy is not necessary. 

RELATION OF MIGRATION SCHEME 
TO THE PHASE-SHIFT METHOD 

In a uniform or horizontally stratified region the migration 

scheme of this study is closely related to the phase-shift method 

(Gazdag, 1978). The point of departure is that the depth cxtra- 

polation is done here numerically instead of by phase shift. 

For a homogeneous region with acoustic velocity C, equation 

(3) can be transformed with respect to x to give 

where q2 = w’/C’ - Ki. and p(K,, z. w) and (dF/dz)(K,. 

z, O) are, respectively, the doubly transformed pressure and 

vertical pressure gradient. 

The solutions of equation (9) arc given by 

p(K,, Z, w) = A / P”‘(- 0) $ A E-‘l’--‘O)], 
(10) 

aF -= 
dZ 

i?[A+ c 
“,(‘?;“) A_ &“” :()I], 

(11) 

where A , and A ~, respectively, represent amplitudes of upgoing 

and downgoing waves and z. is a reference depth. Equations (IO) 

and (I I) can be used for depth extrapolation in a phase-shift 

migration. This migration can also be used for a horizontally 

stratified velocity model by using equations (IO) and (I I) within 

each layer and determining A t and A by the continuity conditions 

of F and ap/az across the top interface of the layer. This type of 

phase-shift migration accounts for amplitude changes. When 

A_ is set equal to zero, only uppoing energy is considered and 

ap/az can no longer be made continuous. The migration then 

becomes the phase-shift method in Ciazdag (1978). In this migra- 

tion A + remains constant at all depths and the correct amplitudes 

of events are no longer restored (Appendix). The migration is then 

equivalent to migration with one-way wave equations. 

When the migration method of this paper is compared with the 

phase-shift method for a stratified medium, it becomes apparent 

that the two methods are identical in the manner in which hori- 

zontal derivatives are calculated [the Fourier method calculates 

d2P/b’ inthe(K,, Z, w) domain by multiplication by -K!]. The 

o_nly difference between the two methods is that in this study, 

P and dP/dz are stepped down by a Runge-Kutta method, instead 

of by equations (IO) and ( 1 I ). Th crcfore, for sufticicntly small 

AZ the two methods should give practically identical results. 

EXAMPLE: A BURIED W’EDGE STRUCTURE 

In the example of a buried wedge structure, the input time sec- 

tion was obtained from the acoustic modeling tank at the Seismic 

Acoustics Laboratory at the Univ. of Houston. The Same model 

was used in Kosloff and Baysal (1982) to compare forward 

modeling results. The scaled dimensions of the model are shown 

in Figure 3. The wedge structure was made of low-velocity room 

temperature vulcanized (RTV) rubher. whereas the base was 

made of high-velocity Plexiglas. Th\: whole model was immersed 

in water which had a scaled velocity of 3950 m/set. A zero-offset 
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FIG. 4. time section from a zero-offset line shot in the physical modeling tank 
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line was collected perpendicular to the symmetry axis of the 
wedge at a scaled height of approximately 800 m above the 
wedge tip. with a shot spacing of 26 m. Since this model includes 
steep dips and high velocity contrasts. it serves as a good test for 
the migration algorithm. 

Figure 4 shows the observed time section. Events A and B are 
interpreted as reflections from the sloping sides of the wedge. 
whereas events C and D arc reflections from the Plexiglas base. 
Events E and F are complicated events not accounted for by the 
exploding reflector model (Kosloff and Baysal. 1982). 

In order to make the migration as objective as possible. no prior 
knowledge of the structure was assumed and at first the time scc- 
tion (Figure 4) was migrated with a uniform velocity equal to the 
scaled water velocity of 3950 m/set. The migrated section is 
shown in Figure 5. In this figure events which traveled to the sur- 
face through water only were migrated to their respective proper 
positions including the 60 degree wedge interface B. On the other 
hand, the reflection C from the Plexiglas base underlying the 
wedge is undermigrated. 

In the second stage. variable velocities were introduced. The 
velocity interfaces. except portions of the base under the wedge, 
were derived from the depth section of the constant velocity migra- 
tion (Figure 5). The portion of the base under the RTV wedge was 
continued horizontally (Figures 5 and 6). The scaled velocities 
were taken as 3950 misec for water. 6000 m/set for Plexiglas. 
and 2650 misec for the RTV (Figure 6). 

The migrated section with variable velocity is shown in Figure 
7. In this figure, the Plexiglas base C under the RTV wedge is de- 
fined in the correct location. However, part of the base is missing. 
This can be attributed to the fact that energy which propagates 
upward from this portion of the base encounters the steeply 
dipping side of the wedge at an angle beyond the critical angle 
for RTV and water. This type of propagation is not accounted for 
by the exploding reflector model on which the migration is based. 

It is interesting to note that the migrated results are extremely 
sensitive to small changes in RTV velocity. In particular the Plexi- 
glas base under the RTV wedge becomes misaligned whenever 
this velocity is perturbed, in the same manner as the misalignment 
in Figure 5. In fact. the RTV velocity of 2650 m/set used for the 
migration is about 300 m/see higher than the velocity which is 
usually quoted for this material. This sensitivity may suggest 
using migration as a means to determine velocities of physical 
modeling materials. 

CONCLUSIONS 

A migration scheme based on a direct integration in depth of the 
acoustic wave equation has been presented. After the problems of 
specification of surface boundary conditions and the removal of 
evanescent energy had been addressed, implcmcnting this migra- 
tion algorithm was not more complicated than implementing 
one-way equation schemes. 

The presentmethod may offer improvements over conventional 
finite-difference schemes with regards to the migration of steeply 
dipping structures, or migration in regions with high velocity con- 
trasts. This is because the full acoustic wave equation is not based 
on any assumptions concerning the nredium through which the 
waves propagate. Moreover, the numerical algorithm which was 
used is highly accurate because it uses the Fourier method for cal- 
culating horizontal derivatives and a fourth-order Runge-Kutta 
method for the depth extrapolation. Consequently. for a hori- 
zontally stratified medium it proved to be practically equivalent to 
the analytic phase-shift method (Gazdag. 197X). 

The possibility of using the full acoustic wave equation for 

migration. which was demonstrated in this study for stacked sec- 
tions, may gain added significance for migration of nonstacked 
time sections. There. the preservation of amplitude information 
becomes important and therefore a migration scheme based on 
the full acoustic wave equation may be necessary to achieve 
satisfactory results. 
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APPENDIX 
WAVE AMPLITUDES FOR I-D ONE-WAY WAVE EQUATIONS 

This appendix shows that one-way wave equations fail to re- 
produce correct amplitudes for I-D propagation. 

A wide class of one-way equations are derived from a series 
expansion of the dispersion relation 

w 
- II t (Kf + KG)’ 2 
C 

(A-l) 

(e.g.. Claerbout. 1976. p. 202). where K, andK, arc. respectively, 
the vertical and horizontal wavenumbers. w is the temporal fre- 
quency. and C is the acoustic velocity which is assumed to vary 
slowly in space. The I5 degree wave equation (Claerbout, 1976). 
for example, can be derived by retaining the first two terms in a 
Taylor series expansion of equation (A- I ) and by replacing the 
dispersion relation by a differential equation and transforming 
the result to the moving coordinate system of Claerbout (1976). 

In I-D vertical propagation. K, in equation (A- I ) is set to zero 
and the one-way wave equation which corresponds to equation 
(A- I) becomes 

I dP --_=s’p, 
C(z) at 

(A-2) 
a2 

Equation (A-2) can also be derived directly from most onc-way 
wave equations by setting all terms containing horizontal deriva- 
tives to zero. Equation (A-2) can be solved by using the variable 
separation 

We obtain 
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(Mathews and Walker, 1964). This solution does contain ampli- 
(A-3) tude modulation depending upon C’(Z). 

In the case of velocity jumps at interfaces, the one-way wave 
Equation (A-3) is the zeroth order WKB solution to the full equation solution (A-3) gives the same wave amplitudes at both 
acoustic wave equation (Mathews and Walker, 1964). With this sides of the interfaces. On the other hand, for the acoustic wave 
solution the amplitude is constant throughout the medium regard- 
less of the values of C(z). Conversely, it may be recalled that the 

equation, these amplitudes differ by the ratio of the transmission 
coefficients. 

first-order WKB solution to the acoustic wave equation is given by In conclusion, for both smooth and discontinuous velocity 

P(z, t) = &exp[iiw(r-[:&]] (A-4) 

variation, the one-way wave equation does not produce the 
correct amplitude. These results also apply to wave propagation 
in two or three spatial dimensions. 
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