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Viscoacoustic wave propagation simulation in the earth 

Jose M. Carcione*, Dan Kosloff*, and Ronnie Kosloffl 

Anelasticity of earth materials produces significant 
changes in the amplitude and phase spectra of seismic 
waves. The anelastic properties of real materials, partic- 
ularly of porous rocks, are described using the theory 
of linear viscoelasticity based on Boltzmann's super- 
position principle. Wave-propagation simulation with 
this model requires implementing the convolutional 
relation in the equation of motion. The choice of a vis- 
coacoustic constitutive relation based on a spectrum of 
relaxation mechanisms allows a realistic description of 
the anelastic effects, and the introduction of memory 
variables obviates storing the entire strain history re- 
quired by the time convolution. A pseudospectral time- 
integration technique is used to solve the equation of 
motion. 

Applications of viscoacoustic modeling suggest the 
need for considering the correct attenuation-dispersion 
effects for various fundamental seismic problems in 
anelastic earth models. Comparison of acoustic and vis- 
coacoustic synthetic seismograms shows differences in 
the amplitudes and arrival times of the wave fields 
which are enhanced for particular combinations of anel- 
astic and geometrical effects. 

INTRODUCTION 

Wave propagation in the earth has always been known to 
be anelastic. Therefore simulations which attempt to accu- 
rately reconstruct amplitudes must be able to account for the 
effects of attenuation and dispersion. It has been shown (Jones, 
1986) that these effects are very important in determining the 
pore fluid content in porous rocks. 

Growing evidence suggests a linear attenuation mechanism 
(with or without constant Q) for seismic strains and upper 
crustal conditions (Jones, 1986). Linear viscoelasticity provides 
a general framework for such behavior. The theory of linear 

viscoelasticity is embodied in Boltzmann's superposition prin- 
ciple, which establishes that the time Fourier transform of the 
stress is equal to  the time Fourier transform of the strain 
n~ultiplied by the complex bulk modulus. The concept of a 
spectrum of relaxation mechanisms is used to define the com- 
plex bulk modulus. 

Liu et al. (1976) showed that a viscoelastic rheology with 
multiple relaxation mechanisms gives a framework that can 
explain experimental observations of wave propagation in the 
earth and in earth-type materials. In particular, Liu and his 
coworkers showed that, with a suitable choice of material pa- 
rameters. both a constant Q value and a dispersion relation 
which qualitatively explains differences in seismic-wave veloci- 
ties in difrerent frequency ranges can be obtained. 

Implementation of the theory of general linear vis- 
coelasticity to frequency-domain methods is straightforward 
because of the correspondence principle, which states that the 
solution of a dynamic problem for a viscoelastic material can 
be obtained from the solution of the corresponding problem 
for an elastic solid by applying the time Fourier transform to 
the elastic solution, replacing the elastic constants by the cor- 
responding viscoelastic complex moduli, and finally inverting 
the transform (Bland, 1960, p. 96). However, for direct meth- 
ods in the time domain, the convolutional kernel represented 
by Boltzmann's superposition principle is difficult to imple- 
ment in the equations of motion. Day and Minster (1984) 
implemented the equations of motion using an approach 
based on Pade approximants to transform the convolution 
integral into a convergent sequence of constant-coefficient dif- 
ferential operators of increasing order, a formulation equiva- 
lent to the rheology of multiple relaxation mechanisms men- 
tioned above (Carcione et al., 1987). For each mechanism, a 
first-order differential equation was obtained that, together 
with the scalar equation of motion, was solved by a finite- 
difierence scheme. 

In this work, the equations of motion are implemented in 
the convolution integral by introducing memory variables, 
one for each relaxation mechanism. The algorithm requires 
more storage than in the purely acoustic case but not signifi- 

Manuscript received by the Editor May 20, 1987; revised manuscript received September 28, 1987. 
*Department of Geophysics and Planetary Sciences. Tel-Aviv University, Tel-Aviv 69978, Israel, and Geophysical Institute, 
Hamburg University. D 2OOO Hamburg. West Germany. 
:Departmen1 of  Physical Chemistry and The Fritz Haher Research Center for Molecular Dynamics, The Hebrew University, 
( 1988 Society of Exploration Geophysicists. All rights reserved. 

Downloaded 06 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



770 Carclone et al. 

cantly more computation. The acoustic case requires storage 
for the dilatation and time derivative of the dilatation for each 
grid point; the viscoacoustic problem adds storage of the 
memory variables. 

The new theory explains, within the framework of the most 
general linear relation between stress and strain, the correct 
changes in the phase and amplitude spectra of the wave field 
for any type of frequency-dependent complex modulus func- 
tion. A more complete description of the physical model can 
be found in Carcione et al. (1987), where the numerical algo- 
rithm is verified by comparison with solutions for wave propa- 
gation in a homogeneous viscoacoustic medium. 

This work is concerned with viscoacoustic wave propaga- 
tion in two spatial dimensions. The first section presents the 
constitutive relation and relaxation function for the vis- 
coacoustic medium. Then the quality factor and phase and 
group velocities are defined as functions of the complex bulk 
modulus. The following section briefly derives the basic equa- 
tions for the viscoacoustic wave field obtained after definition 
of the memory variables. 

Three examples of wave propagation through different types 
of geologic models are studied. Each example compares 
acoustic with viscoacoustic synthetic time sections for the 
same geologic structure, the objective being to identify the 
wave-field changes due to the presence of the anelastic effects. 

COKSTITUTIVE RELATlOS OF THE 
VISCOACOUSTIC MEDIUM 

In perfectly elastic solids, according to Hooke's law, stress is 
directly proportional to instantaneous strain but independent 
of the rate of strain; and the mechanical energy is stored 
without dissipation. On the other hand, for perfectly viscous 
liquids, in accordance with Newton's law, the stress is directly 
proportional to the rate of strain and independent of the 
strain itself; but in this case the energy is completely dissi- 
pated. 

A realistic representation of the earth may be achieved by 
combining the mechanical properties of elastic solids and vis- 
cous liquids. In the resulting material, the stress depends upon 
both the strain and the rate of strain, as well as on higher time 
derivatives of the strain. Such a medium, which combines the 
characteristics of solids and liquids, is called viscoelastic. 
These kinds of materials can both store and dissipate mechan- 
ical energy. An introduction to the study of the viscoelastic 
behavior of materials can be found in Christensen (1982). 

In this paper, the time convolution of two functionsf(t) and 
g(t) is expressed by 

and the definition 

is used, where H(t) denotes the Weaviside function. 
The response of the earth is approximated by the vis- 

coacoustic rheology. The most general linear relation between 
pressure p(x, t) and dilatation e(x, t) in an n-dimensional vis- 
coacoustic medium is expressed by 

p(x, t) = -4x, t) * YC(x, t), (1) 

where x is the n-dimensional spatial vector, r is the time, and 
the dot above a variable represents a time derivative. The 
relaxation function of the medium Y(t) is given by (Liu et at., 
1976) 

in which r,/(x) and r,<(x) denote material relaxation times for 
the Pth mechanism, 1, is the number of relaxation mechanisms, 
and M, (x) is the acoustic or relaxed modulus of the medium. 

Equation ( 1 )  is the formulation of Boltzmann's super- 
position principle, such that the current pressure is the super- 
position of the responses from previous times. A material of 
this type is considered to have a memory because the current 
pressure depends upon the full strain history. 

ATTENUATION AND DISPERSION 

The relaxation function Y(t) completely describes the re- 
sponse of the medium. It is possible to obtain from Y(t) the 
spatial quality factor Q,(w) and the phase and group velocities 
C(O) and c,(o), respectively, where w is the frequency. These 
quantities give a measure of the attenuation and dispersion of 
the wave field. 

The constitutive relation ( I )  is analogous to the purely 
acoustic relation when viewed in the frequency domain. In 
that domain, the pressure transform is merely a multiplication 
of the time Fourier transforms of the dilatation field and the 
time derivative of the causal relaxation function. The latter is 
identified as the complex bulk modulus of the medium, given 
by (Carcione et a]., 1987) 

The spatial quality factor is then 

Re ( M , )  
Ye(@ = -- 

Im ( M , )  ' 

The phase velocity, defined as the frequency divided by the 
real part of the complex wavenumber k, = [M,.(o)/p]'iZ 
(where p is the density of the medium), is 

in which c, = (M,/p)"* is the relaxed velocity of the medium. 
The group velocity of the wave field, obtained as the deriva- 
tive of the frequency with respect to the real wavenumber 
k - o/c(o), is 

where 
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Real materials behave elastically at  both very low and very 
high frequencies. The relaxation function (2), which is based 
on the general standard linear solid rheology (Liu et al., 1976), 
correctly describes this behavior as is clear from the quality 
factor (4) (in the limits w * 0 and w + oo, Q, -+ a). 

In this work we choose the acoustic behavior in the low- 
frequency limit. For a standard linear solid mechanical model, 
the acoustic limit is reached when the dashpot is eliminated; 
elimination implies r,, * 0 and ra,--* 0 (Ben-Menahem and 
Singh, 1981, p. 856). Eliminating the dashpot is equivalent to 
o+ 0, as can be seen from equation (3); hence, the relaxed 
and acoustic moduli coincide. In practice, however, we d o  not 
need to restrict the representation of real materials to mechan- 
ical models; therefore, we can choose the acoustic or "nondis- 
persive" behavior in the high-frequency limit. This choice is 
the case in Ben-Menahem and Singh (1981, p. 873). In con- 
clusion, when r,, and r,,+ 0 or r,( = r,, in equation (3), the 
complex bulk modulus equals the relaxed bulk modulus; and 
the acoustic case is obtained. In this limit, the phase and 
group velocities are constant and equal to the acoustic veloci- 

ty. 

EQUATIONS OF MOTION 

The equations of motion are derived first by taking the 
divergence of the equations of momentum conservation for 
the n-dimensional viscoacoustic continuous medium. The re- 
sulting equation is given by 

where s(x, I) is a source term given by the divergence of the 
body forces divided by the density and D is a spatial operator 
detined by 

The convention in which repeated indices imply summation is 
used throughout this work. 

MEMORY VARIABLES 

Equations (1) and (7) fully describe the deformation of the 
viscoacoustic medium, and in principle could be a basis for a 
numerical solution algorithm. However, the convolution inte- 
gral in equation (1) poses difficulties because it requires a 
knowledge of the full strain history, unlike acoustic relations 
which involve only current values of variables. It was shown 
in Carcione et al. (1987) that the convolution integral can be 
avoided by introducing memory variables. In this section, we 
summarize the main results given in the previous paper. 

Equation (1) can also be written as 

Performing the time derivative and using equation (2) yields 

where M, = Y(0)  is the unrelaxed modulus and 

is called the response function of the medium. 4, for each of 
the L relaxation mechanisms is given by 

We now define L memory variables e,, by 

e,,(t)=e(t)*+;(t), e =  1 ,..., L. (13) 

Taking derivatives with respect to time and using properties of 
the Heaviside function, we get 

where equation (12) was used. 
Substituting equation (10) into equation (7) and using equa- 

tions (1 l), (13), and (14), we obtain a coupled first-order ordi- 
nary differential equation in time (Carcione et al., 1987): 

where l)J is a spatial operator matrix of dimension L + 2 
given by 

with 

and the source vector expressed by 

ST = [O, s, 0, 0, . . . , 01. (18) 

Equation (15) represents the equation of motion governing 
the viscoacoustic response of the medium. It correctly de- 
scribes the anelastic effects observed in wave propagation, 
namely, attenuation and dispersion, within the framework of 
the linear response theory. The model can describe wave prop- 
agation through any kind of linear viscoacoustic material, for 
example porous rocks where waves of the first kind can be 
approximated by the standard linear solid rheology (Geertsma 
and Smit, 1961), provided the complex bulk modulus of the 
porous media is given as a function of the frequency. By fitting 
the observed complex bulk modulus to the viscoacoustic bulk 
modulus given by equation (3), the corresponding relaxation 
times and relaxed bulk modulus can be obtained for any fre- 
quency range. 

Storage requirements increase with the number of memory 
variables, i t . ,  with the number of relaxation mechanisms. De- 
pending upon the accuracy required, constant-Q materials in 
the seismic exploration band (say between 5 and 100 Hz) can 
be obtained by using two or more sets of relaxation times. It 
was shown by Geertsma and Smit (1961) that to describe 
viscoacoustic wave propagation (P waves) in a Biot medium, 
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only one mechanism is necessary. Besides the curve-fitting 
procedure used in this work. optimal relaxation times can be 
obtained using the Pade approximant method derived by Day 
and Minster (1984). 

For the spatial derivative operator D in equation (15). we 
use the Fourier pseudospectral method (Kosloff and Baysal, 
1982), which consists of a discretization of the space and cal- 
culation of spatial derivatives using the fast Fourier transform 
(E'E'T). 

Propagation in time is performed by a new pseudospectral 
time-integration technique (Tal-Ezer, 1986; Tal-Ezer et a]., 
1987; Carcione et al., 1987). Because this approach is very 
accurate, numerical dispersion is avoided. Avoiding numerical 
dispersion is very important in viscoacoustic wave propaga- 
tion. where numerical dispersion could be confused with the 
real physical dispersion. 

ABSORBING BOUNDARIES 

Because the Fourier method considers the discretized vari- 
ables on the grid as periodic functions, absorbing boundaries 
are implemented to prevent wraparound, the phenomenon in 
which a pulse exiting the grid on one side reenters it on the 
opposite side. T o  eliminate wraparound, we use a method 
developed by Kosloff and Kosloff (1986) of systematically 
eliminating the wave amplitude in a strip along the boundary 
of the numerical mesh. This is achieved by replacing the oper- 
ator M in equation (15) by the operator (M - al), where J is 
the identity matrix and a ,  the absorption, is given by 

a = [l0/cosh2 (6 m), (19) 

where U, is a constant and 6 is a decay factor. The parameter 
a(.q Z )  is chosen to differ from zero only in a strip of nodes (m)  
surrounding the numerical mesh. Equation (19) has the func- 
tional form of the complex potentials used in quantum me- 
chanics, where, with an appropriate choice of parameters, it is 
possible to  eliminate reflected or transmitted energy from the 
absorbing region. 

T o  clarify the method, let's consider the one-dimensional 
(I-D) acoustic limit (ref = r,,, T = I ,  ..., L) of equation (15) 
with constant material properties and zero source term: 

where c, is the acoustic wave velocity; in the acoustic limit, 
M , = Y ( O )  rM, and @;(0)-+O, 1 P =  1, ..., L. When a = 0 ,  
the first equation in (20) expresses the relation V = deldr, 
whereas the second one is the acoustic wave equation. When a 
is different from zero, eliminating V makes equation (20) read 

This equation has a general solution of the form 

with A and B arbitrary constants and f, and.f, arbitrary twice 
differentiable functions. The solution represents attenuating 
waves in space, where all frequency components are equally 
attenuated. This means that the absorbing boundary will 

Table I .  Relaxation times (seconds). 

gradually attenuate the wave field without changing shape or  
producing dispersion. 

EXAMPLES OF WAVE PROPAGATION 
THROLGH VlSCOACOUSTlC MEDIA 

Now we examine wave propagation through different types 
of geologic structures. In the first problem the wave field 
changes are analyzed in a homogeneous medium. The second 
example computes a common shot synthetic section for a lay- 
ered structure with a homogeneous quality factor. In the third 
case, a zero offset section for a structure with a low Q lens- 
shaped body is calculated using the exploding reflector con- 
cept. 

Homogeneous earth 

To illustrate the wave-ficla changes due to attenuation and 
dispersion, we consider wave propagation in a two- 
dimensional (2-D) homogeneous medium. The motion is initi- 
ated by a point force located at the center of a 132 x 132 grid 
with spacing DX = DZ = 20 m. The source is a shifted zero- 
phase Ricker wavelet defined by 

F(r) = exp [-0.5/i(r - to)*] cos rrfo(f - to), 

with I, = 0.06 s and a high cutoff frequency ,fo = 50 Hz. The 
relaxed bulk modulus of the medium is chosen as M ,  = 

8 G P a  and the density is p = 2g/cm3; consequently the acous- 
tic or relaxed velocity is r, = 2000 m/s. The material has five 
relaxation times (see Table I ) ,  which give an almost constant 
spatial quality factor Q, % 100, a typical value in the explora- 
tion seismic band. 

Figures l a  and l b  show the quality factor and phase and 
group velocity dispersion, respectively, as functions of the fre- 
quency ,f: The continuous line in Figure Ib  corresponds to the 
phase velocity. 

Figures 7a and 2b compare viscoacoustic and acoustic time 
histories for identical configurations at stations located 200 m 
and 800 m from the source. respectively. As the figures show, 
there is a relatively small difference in amplitude between solu- 
tions for the 200 m range; but at a range of 800 m, the 
difference becomes more apparent. In the latter case, the vis- 
coacoustic pulse arrives earlier than the acoustic one. This 
early arrival results from the group velocity's (dashed line) 
being greater than the acoustic velocity. as is clear from 
Figure I b. The amplitude reduction is also more pronounced 
for the viscoacoustic case. 

Flat layered structure 

A layered geologic structure is used to demonstrate the in- 
fluence of attenuation on a common shot experiment. The 
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geologic model is shown in Figure 3 with the source located at 
point S and the recording geophones represented by a set of 
stars. The velocities indicated are the relaxed velocities of the 
medium, and the density is considered to be constant with the 
same value in all of the layers. The same set of relaxation 
times (Table 1) is used for all the layers. The numerical model 
uses a 88 x 88 grid with a spacing of DX = DZ = 20 m. The 
absorbing region surrounding the numerical mesh has a width 
of 15 grid points with parameters U, = 40 s- ' and 6 = 0.18 
m-I. 

Figures 4a and 4b show the viscoacoustic and purely acous- 
tic time sections, respectively. The four coherent events are the 
high-amplitude direct wave field and the hyperbolas corre- 
sponding to the three flat, not very deep, reflectors. The higher 
amplitude for the acoustic wave field can be seen mainly in the 

F R E Q U E N C Y  (Hz1 

F R E Q U E N C Y  (Hz1 

FIG. 1. (a) Spatial quality factor versus frequency. (b) Phase 
and group velocities versus frequency. The medium is defined 
by a relaxed modulus M ,  = 8 GPa, a density p = 2 g/cm3, 
and the five sets of relaxation times given in Table 1. 

TIME tmsl 

TIME Cmel 

FIG. 2. Time history comparison between the viscoacoustic 
and acoustic forward modeling algorithms for a homogeneous 
earth at distances from the source of (a) 200 m and (b) 800 m. 

I 0 .  moo. 1000. 1moo. 

d i s t a n c e  Cml 

FIG. 3. Geologic model and configuration of a flat layered 
structure problem. The coordinates of the first receiver relative 
to the source position are x, = 400 m and y, = -200 m. The 
distance between adjacent rece~vers is 20 m. 
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last geophones of the recording line; and the earlier arrival 
time of the last event for the viscoacoustic wave field is appar- 
ent. For deeper reflecting horizons, these effects will be even 
more pronounced. 

Highly anelastic body 

The model depicted in Figure 5 shows a highly attenuating 
body represented by a lens with a low spatial quality factor 
Qe , 15, immersed in a medium having Q, x 100 over a flat 
interface. Table 2 shows the set of relaxation times of the lens' 
material. Figures 6a and 6b show the quality factor and phase 
and group velocity dispersion, respectively, as functions of the 

RECEIVER 

(a) 

R E C E I V E R  

FIG. 4. Synthetic time sections, corresponding to a flat layered 
structure, for (a) the viscoacoustic model and (b) the purely 
acoustic model. 

d l s t a n c e  Crnl 

FIG. 5. Geologic model and configuration for the highly an- 
elastic body exploding reflector experiment. The lens limits are 
constructed by cubic splines interpolation. The coordinates of 
the first receiver relative to the left extreme of the lens are 
x, = - 300 m and y ,  = 360 m. The distance between adjacent 
receivers is 20 m. 

frequency f: A strong velocity dispersion can be observed. 
With this attenuation-dispersion pair, although this model is 
highly idealized, the lens may represent a near-surface un- 
consolidated material or a strongly anelastic porous rock. The 
velocities indicated are the acoustic or relaxed velocities. The 
same source time history as for the previous example is used. 
The numerical model uses a 99 x 99 grid with a spacing 
DX = DZ = 20 m and the absorbing boundaries of the earlier 
example. 

The experiment approximates a zero-offset section by 
means of the well known exploding reflector model (Loe- 
wenthal et a]., 1976). To implement the exploding reflector 
experiment, we assume an earth with a constant impedance, a 
condition that can be approximately realized by setting pc, = 

C ,  where C is a constant. A similar procedure for the purely 
acoustic case was described in Baysal et al. (1984). With this 
assumption, the operator matrix &I in equation (15) is ex- 
pressed by modifying its elements in the following way: 

and 
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Table 2. Relaxation times (seconds). 

FREQUENCY [Hz )  

_ C - - - - group _ - 
...- / 

/ phase 

In order to obtain the correct time events and anelastic effects, 
the relaxed velocity is halved. 

Viscoacoustic and acoustic synthetic time sections are 
shown in Figures 7a and 7b, respectively. Three coherent 
events can be identified in the synthetic seismograms. They are 
the time responses of the top and bottom interfaces that define 
the lens, and after 0.4 s, the time response of the flat interface. 
The strong "bright spot" in the acoustic time section is a 
geometrical effect caused by focusing of the flat interface due 
to the presence of the lens. This focusing effect has completely 
disappeared in the viscoacoustic seismogram, where the ampli- 
tude of the wave field was affected by the strong absorption in 
the lens. Also, the pull-down effect that is appreciable at the 
onset times of the acoustic time section has disappeared on 
the viscoacoustic section, a consequence of the strong velocity 
dispersion inside the lens. 

The time response of the top of the lens shows no major 
changes, but the response of the bottom is considerably af- 
fected. The strong amplitude in the middle of the later event 
observed in the viscoacoustic seismogram is probably due to 
constructive interference resulting from wave-field changes 
caused by the anelastic effects, mainly velocity dispersion. 
Therefore, it is important to correctly describe the changes in 
the phase spectra of the wave field. For long propagation 
distances, even a small variation in phase velocity can produce 
significant changes in waveforn~s and amplitudes. 

CONCLUSIONS 

FIG. 6. (a) Spatial quality factor versus frequency. (b) Phase 
and group velocities versus frequency. The medium (the lens in 
Figure 5) is defined by a relaxed velocity c,  = 4000 m/s and 
the five sets of relaxation times given in Table 2. 

We have presented a model for viscoacoustic wave propa- 
gation simulation that is completely general within the class of 
linear constitutive relations. The theory, based on Boltzmann's 
superposition principle, includes as special cases any linear 
model such as those which describe acoustic wave propaga- 
tion in sedimentary rocks, for instance, the theory of Murphy 
et al. (1986). Extension of the theory to the viscoelastic rheol- 
ogy allows us to describe elastic wave propagation through 
porous media (Biot, 1956a, b; Burridge and Keller, 1981; de la 
Cruz and Spanos, 1986). In addition to a viscoelastic repre- 
sentation of theoretical complex moduli, experimental data 
can be used when quality factors versus frequency and velocity 
dispersion are available. 

Applications of viscoacoustic modeling suggest a strong 
need to consider the correct attenuation-dispersion effect for 
fundamental seismic problems in anelastic earth models. Com- 
parisons between viscoacoustic and acoustic seismic responses 
of the two geologic models presented here show differences in 
the amplitudes and arrival times of the wave field. The first 
example shows that the viscoacoustic wave pulse arrives ear- 
lier than the acoustic one. This is a consequence of the disper- 
sion effect, which becomes more important with increasing 
distance. The example of the highly attenuating body indicates 
that the combination of geometrical and anelastic effects can 
considerably alter the recorded wave field. 

Existing algorithms that simulate the process of wave prop- 
agation are mainly based on the acoustic wave equation. The 
present theory improves the acoustic assumption and there- 
fore represents a more suitable tool for solution of geophysical 
problems and interpretation of seismograms. In the future, we 
plan to expand this effort by incorporating a truly viscoelastic 
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FIG. 7. Synthetic time sections corresponding to the highly attenuating body, for (a) the viscoacoustic model and (b) the
purely acoustic model.
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rheology t o  address the problem of wave propagation in a 
porous medium. 
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