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Uncertainty in determining interval velocities
from surface reflection seismic data

Dan D. Kosloff∗ and Yonadav Sudman∗

ABSTRACT

The ability of reflection seismic data to uniquely deter-
mine the subsurface velocity has been uncertain. This pa-
per uses a tomographic approach to study the resolution
of typical seismic survey configurations. The analysis is
first carried out in the spatial Fourier domain for the case
of a single horizontal reflector. It is found that for a ratio
of maximum offset to layer depth of one, the lateral res-
olution is very low for velocity and interface depth vari-
ations of wavelengths of approximately two-and-a-half
times the layer thickness. The resolution improves with
an increase in the ratio of maximum offset to layer depth.
The results of the analysis in the Fourier domain are con-
firmed by results from a least-squares tomographic algo-
rithm. It is found that regularization of the tomography
by adding damping terms suppresses the spurious oscil-
lations resulting from the areas of low resolution at the
expense of loss of resolution at the shorter spatial wave-
lengths. Analysis of the single layer response for 3-D
survey geometry shows that a 3-D acquisition with mul-
tiazimuthal coverage has the potential to significantly
improve velocity determination.

INTRODUCTION

The determination of the subsurface velocity from seismic
data is a fundamental part of seismic data processing and is a
key to correct imaging of the earth’s upper structure. Veloc-
ity analysis for depth imaging is more stringent than velocity
analysis for typical time processing. Interval velocities used for
depth processing honor a higher precision than the smoother
stacking or rms velocities more appropriate for time process-
ing. The resolving ability of reflection seismology to determine
subsurface depth and velocity variations has been questioned,
especially for structures containing layers with laterally varying
velocity. The purpose of our paper is to examine this issue.
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Several researchers have addressed the topic of the resolu-
tion of the seismic reflection method. Bube et al. (1995) showed
that there are vertical variations in the velocity which do not
produce changes in traveltimes. They concluded that these ve-
locity variations cannot be uniquely determined from reflec-
tion seismic data. However, they claimed that the interface
depths are resolvable. Their work implies that structures in
which the layer velocities vary only laterally can be resolved
both in terms of the velocity and of the interface depth. On the
other hand, Bickel (1990), Sherwood et al. (1986), and Tieman
(1994) reached a different conclusion: for such structures there
is a range of wavelengths of the seismic velocities and interface
depths for which a unique solution cannot be determined. Per-
haps the difference between the conclusions of these investiga-
tors can be explained by the fact that Bube et al. (1995) referred
to a strict null space, whereas Bickel (1990), and Sherwood
et al., (1986) referred to very small but not necessarily zero
eigenvalues.

Our paper reexamines the velocity determination problem
using a tomographic approach. The subsurface models consid-
ered are layered structures where both the velocity and inter-
face depth need to be determined. The velocity updates within
each layer are constant in the vertical direction and laterally
variant in the horizontal direction. Since the velocity determi-
nation issue is quite complicated, we use initial models which
were sufficiently close to the correct models to ignore non-
linear effects. An additional assumption used throughout our
study is that both the initial models and the updated models
should produce the same zero-offset traveltime. This assump-
tion is equivalent to the requirement that the models repro-
duce the time picks of layer reflections on a stacked common-
midpoint (CMP) section. The fulfillment of this assumption, at
least in an approximate sense, helps maintain physical feasi-
bility and stability in velocity analysis in the depth domain by
excluding models which produce zero-offset time picks which
significantly deviate from the observed picks.

In order to make the study of uncertainty more tractable,
we examine simple initial models containing horizontal layers

952

Downloaded 06 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Interval Velocity Uncertainties 953

with uniform velocity. Since these models are spatially invari-
ant, part of the analysis is carried out in the spatial Fourier do-
main. However, our conclusions also apply to laterally variant
models.

The first section of this paper establishes the spatial dis-
cretization used in the study. Next, the tomographic equations
for a single horizontal layer are derived in two dimensions in the
spatial Fourier domain. The velocity resolution is examined for
different offset-to-depth ratios. We found that, for the range of
offset to depth ratios typically used in exploration geophysics,
there are wavelengths of the velocity variation which are diffi-
cult to resolve. Subsequently, the analysis is carried out for 3-D
acquisition geometry. We show that the velocity resolution im-
proves when the 3-D survey contains a range of source-receiver
azimuths. In the following sections, we investigate the solutions
of a global tomographic scheme which was originally designed
for nonhorizontal structures (Kosloff et al., 1996). This algo-
rithm includes spatial discretization and uses damping terms
for the stabilization of the solution. The results of the tomo-
graphic scheme agree with analysis in the Fourier domain and
confirm the presence of velocity and interface depth variation
that are difficult to determine.

SPATIAL DISCRETIZATION

Our paper examines tomographic updates of initial models
of horizontal layers with uniform velocity (Figure 1). Denoting
by δth(x) the difference between the observed and calculated
traveltime at a midpoint x and for a half offset h, the to-
mography searches for slowness and layer thickness updates
[δs(x), δH(x)] which change the traveltime by this amount.
The slowness and layer thickness updates within a layer
are laterally variable but constant in the vertical direction.
The updates are calculated at nodes which are horizontally
separated by constant increments. The solution between
nodes is calculated by linear interpolation from neighboring

FIG. 1. Spatial discretization for slowness (S) and layer thick-
ness (H) estimation.

nodes (we found that using higher order interpolation does
not modify our conclusions).

In order to further constrain the velocity determination, we
added the requirement that the initial model and the updated
model produce equal zero-offset traveltimes. This important
assumption is equivalent to the requirement that the zero-
offset times from all models must closely match the traveltime
picks on a stacked CMP section. This constraint is used explic-
itly in the derivation in the next section. However, in the tomo-
graphic algorithm used in subsequent sections, the condition is
applied as a “soft” constraint in the least-squares formulation.

TOMOGRAPHIC RESPONSE OF A SINGLE
HORIZONTAL LAYER

This section presents the tomographic response of a hori-
zontal layer with uniform velocity.

Let H denote the layer thickness and s denote the layer
slowness. The traveltime change δth(x) at the midpoint location
x for a half-offset h resulting from slowness and layer thickness
changes δs(x) and δH(x), respectively, is given by

δth(x) = 1
sin θh

∫ x+h

x−h
δs(x′) dx′ + 2s(x) cos θhδH(x), (1)

where sin θh= h/
√

h2+ H 2. This equation is a simplification of
the tomographic principle for laterally variable models given
in Farra and Madariaga (1988) and Kosloff et al. (1996). The
equation is also equivalent to equations (1) and (2) in Bube
et al. (1995), except that there the integration is carried out
over the vertical coordinate. Our equation (1) is also similar
to equation (37) in Bickel (1990), but he uses the velocity as a
variable instead of the slowness. In the tomographic lineariza-
tion, the first term is the integral of the slowness change along
the raypath of the intial model, whereas the second term gives
the contribution from the change in interface depth.

For laterally invariant models, equation (1) can be written
as a spatial convolution:

δth(x) = 1
sin θh

π

(
x

2h

)
∗ δs(x)

+ 2 cos θh s(x)δ(x) ∗ δH(x), (2)

where ∗ denotes a convolution and π(x) is the boxcar function

π(x) =


1 for |x| < 1/2

1/2 for |x| = 1/2

0 for |x| > 1/2

,

and δ(x) is the Kronecker delta.
After introducing time-normalized variables δs′(x)=

Hδs(x) and δH ′(x)= sδH , the spatial Fourier transform of
equation (2) yields

δt̃h(k) = 2
cos θh

sinc(kh)δs̃′(k)+ 2 cos θhδH̃
′(k), (3)

where sinc(x)= sin(x)/x.
For models which conserve zero-offset time,

t0 = 2sH = 2(s+ δs)(H + δH),

with t0 the zero offset time. To first order, δs′ =−δH ′, and
equation (3) becomes
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δt̃h(k) =
(

2
cos θh

sinc(kh)− 2 cos θh

)
δs̃′(k). (4)

This equation relates the spatial transform of the time error
at a given offset to the transform of the slowness perturbation.
In a multioffset experiment, the problem becomes overdeter-
mined. The least-squares solution is;

h=hmax∑
h=hmin

(
2

cos θh
sinc(kh)− 2 cos θh

)2

δs̃′(k)

=
h=hmax∑
h=hmin

(
2

cos θh
sinc(kh)− 2 cos θh

)
δt̃h(k).

The ability of the tomography to resolve a wavenumber com-
ponent of the slowness variation depends on the sum on the
left-hand side of the equation. Figure 2 plots

r =
h=hmax∑
h=hmin

(
2

cos θh
sinc(kh)− 2 cos θh

)2

as a function of the wavelength to layer-depth ratio (where
λ/H = 2π/kH) for hmin= 0 and a maximum offset-to-depth ra-
tio of one. The figure shows that the tomographic resolution
is very low in the range of wavelengths around λ/H = 2.4. In-
terestingly, the resolution for the shorter wavelengths is very
good. When the maximum offset-to-depth ratio is increased,
the resolution slowly improves, and the point of minimum res-
olution shifts to longer wavelengths (Figure 3). However the
resolution value at the minimum point remains low unless very
large offset-to-depth ratios are present.

EFFECT OF SPATIAL DISCRETIZATION
AND INTERPOLATION

The analysis of the previous section was for continuous
slowness and layer thickness updates. A more complete eval-
uation needs to consider the effects of spatial sampling and
interpolation.

FIG. 2. Slowness resolution as a function of normalized wave-
length for a single homogeneous layer with an offset-to-depth
ratio of one.

When a function f (x) is linear interpolated from its sample
values f ( j dx), j = 0,±1,±2, . . . , with dx the sampling rate,
the reconstruction can be written as a convolution,

f rec(x) =
∧(

x

dx

)
∗
∑

n

δ(x − n dx) f (n dx), (5)

where f rec(x) is the reconstruction of f (x) by interpolation,
and

∧
(x) is the triangle function:∧

(x) =
{

1− |x| for |x| ≤ 1

0 for |x| > 1
.

A spatial Fourier transform of equation (5) yields

f̃ rec(k) = sinc2 k dx

2

∞∑
j=0

f̃

(
k+ 2π

dx
j

)
.

Using the relation in equation (4), where δs′rec is substituted
for δs′ yields

δt̃h(k) =
(

2
cos θh

sinc(kh)− 2 cos θh

)
sinc2 k dx

2

×
∞∑
j=0

δs̃′
(

k+ 2π
dx

j

)
. (6)

Equation (6) gives the discretized tomographic principle for
a single horizontal layer. Figure 4 compares the discrete and the
continuous tomographic least-squares responses for an offset-
to-depth ratio of one and dx= H/2. The figure shows that re-
sponse at the short wavelengths is highly attenuated by the in-
terpolation. However, the long wavelength responses remains
very similar to the continuous response. Use of a smaller spa-
tial sampling rate would cause less attenuation of the shorter
wavelengths. Conversely, it would appear that the instability
caused by the spectral minimum can be avoided by selecting
a spatial samplinlg rate greater than half the wavelength at
the minimum. Figure 5 shows, however, in that case, the long
wavelength response of the tomography differs from the con-
tinuous response. The best approach, therefore, seems to be to

FIG. 3. Slowness resolution as a function of normalized wave-
length for a single homogeneous layer with an offset-to-depth
ratio of two.
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use a spatial sampling rate which is smaller than half the wave-
length of the spectral minimum and find an alternative strategy
to handle the poorly determined part of the solution. A later
section analyzes this topic.

TOMOGRAPHIC RESPONSE FOR 3-D SURVEY GEOMETRY

So far, the conclusions of this work have been for 2-D
seismic acquisition. Three-dimensional acquisition can enable
multiazimuthal ray coverage of the subsurface, which perhaps
can reduce the uncertainty in the velocity determination. This
section analyzes the tomographic response of a single uniform
horizontal layer for 3-D acquisition.

FIG. 4. A comparison between continuous and discrete show-
ness resolution for a single homogeneous layer with an off-
set-to-depth ratio of one and a spatial sampling equal to half
the layer thickness.

FIG. 5. A comparison between continuous and discrete slow-
ness resolution for a single homogeneous layer with an off-
set-to-depth ratio of one and a spatial sampling equal to the
layer thickness.

Let the x coordinate coincide with the in-line direction
and the y coordinate coincide with the cross-line direction
(Figure 6). For a shot-receiver pair with an azimuth 9 from
the in-line direction and with an offset 2h, we separate the off-
set into an in-line half-offset hx and a cross-line half-offset hy

according to hx= h cos9 and hy= h sin9 (Figure 6).
Let x′ and y′ denote a different coordinate system where

x′ coincides with the shot-receiver direction on the surface
(Figure 6). Within this system, the tomographic response is
obtained from the 2-D response (2) according to

δth(x′, y′) = 1
H sin θh

π

(
x′

2h

)
δ(y′) ∗ δs′(x′, y′)

+ 2 cos θhδ(x′)δ(y′) ∗ δH ′(x′, y′),

where ∗ denotes a 2-D convolution.
Imposing the preservation of zero-offset time, transforming

to the spatial wavenumber domain, and rotating the results to
the original coordinate system yields

˜̃δth(kx, ky) =
(

2
cos θh

sinc(kxhx + kyhy)− 2 cos θh

)
× ˜̃δs′(kx, ky).

The least-squares response becomes

r =
∑

hx ,hy

(
2

cos θh
sinc(kxhx + kyhy)− 2 cos θh

)2

. (7)

This result is first used for analyzing the velocity resolution of
a 3-D marine survey with a single streamer. The layer depth H

FIG. 6. Three-dimensional survey configuration.
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was 1000 m, the minimum offset was 100 m, and the maximum
offset was 1000 m. Figure 7 presents a color plot of the tomo-
graphic response as a function of the in-line (λx) and cross-line
(λy) wavelengths of the slowness perturbation. The area of low
resolution appears in the plot in red. Since the survey geometry
contains only one azimuth, this result is two dimensional and
similar to Figure 2.

The next test was a three-streamer survey. The distance be-
tween the streamers was 200 ms in the cross-line direction. The
remaining parameters were as in the previous example. The
tomographic response shown in Figure 8 shows that in spite of

FIG. 7. Velocity resolution as a function of normalized in-line
and cross-line wavelengths for a single streamer 3-D marine
survey. Red = low resolution; green = high resolution.

FIG. 8. Velocity resolution as a function of normalized in-line
and cross-line wavelengths for a three-streamer 3-D marine
survey. Red = low resolution; green = high resolution.

the fact that the azimuth range for the larger offsets is quite
small in this example, the spectral minimum is shallower than
in Figure 2 for the single streamer, especially in the in-line
direction.

The third test was an equal distribution of offsets in the in-
line and cross-line directions. The minimum and maximum off-
sets in both directions were 100 m and 1000 m, respectively.
The response, shown in Figure 9, shows that the minimum has
almost disappeared.

The conclusion from this section is that 3-D acquisition with a
wide range of azimuths enables a much better determination of
the velocity than with a 2-D acquisition. This can be understood
by considering the example of a sinusoidal velocity variation
in the x direction. If the wavelength of the variation is approx-
imately equal to the wavelength of the spectral minimum of
the 2-D resolution, the correct velocity cannot be recovered
by acquisition with a single azimuth in the x direction. How-
ever, this velocity can be easily recovered with sufficient offsets
in the cross-line y direction. It is important to note, however,
that the time picking of the tomography needs to preserve the
azimuthal information. The commonly used method of time
picking by hyperbolic delay analysis usually ignores this part
of the data (unless the analysis is divided into separate azimuth
ranges). In tomography of depth-migrated data, the migrated
gathers should be two dimensional with the output offsets
defined in the in-line and cross-line directions.

ADDING DAMPING TERMS TO THE TOMOGRAPHY

Due to the presence of small eigenvalues, the least-squares
solution of the tomography often becomes unstable. Stability
can be restored by preconditioning the least-squares equations.
This section evaluates the response of the tomographic algo-
rithm described in Kosloff et al. (1996) which was originally
designed for laterally variable structures. The tomographic

FIG. 9. Velocity resolution as a function of normalized in-line
and cross-line wavelengths for a 3-D survey with a maxi-
mum offset-to-depth ratio of one and an equal distribution of
azimuths in all directions. Red = low resolution; green = high
resolution.
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solutions are compared to the predictions of the analyses of
the previous sections.

The numerical scheme uses the same spatial discretization
shown in Figure 1; however, slowness and vertical time are used
as the main variables, instead of slowness and layer thickness.
The vertical time of the j th layer is related to the slownesses
and thicknesses by (Kosloff et al., 1996)

t j
v = 2

j∑
i=1

si H i .

FIG. 10. Model configuration for the single-layer test.

FIG. 11. Comparison between the exact solution and the
calculated solution for the single-layer test without data
regularization.

We have found that it is advantageous to work with the ver-
tical time, instead of the time-normalized layer thickness, be-
cause in most cases it changes very little (for horizontal layers,
the vertical time is equal to the zero-offset time, which is as-
sumed constant in this study). By using the vertical time, instead
of being a two-parameter problem, the tomography almost
becomes a one-parameter problem.

FIG. 12. Comparison between the exact solution and the calcu-
lated solution for the single-layer test with data regularization.

FIG. 13. Model configuration for the multilayer test with
smooth velocity variation.

Downloaded 06 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



958 Kosloff and Sudman

Let δm denote vector of update parameters consisting of
the slowness change δs and vertical time change δtv at all the
interpolation nodes. The discretized relation between model
perturbations and the resulting traveltime changes is

δt = Aδm, (8)

where δt is the data vector of travel time errors and A is the
influence matrix. The damped weighted least-squares solution
of equation (8) is given by

FIG. 14. Comparison between the exact solution and the cal-
culated solution for the three-layer model with lateral-velocity
and layer-thickness gradients. (a) First layer, (b) second layer,
(C) third layer.

(
ATC−1

D A+ C−1
M

)
δm = ATC−1

D δt, (9)

where CD is the data covariance matrix containing the variance
of the data on its diagonal, and CM is the parameter covari-
ance matrix (Kosloff et al., 1996). Two types of regularization
are considered, namely diagonal damping with the model vari-
ance, and second-derivative stabilization by adding a compo-
nent of the (−1, 2,−1) convolution operator to CM. For the
example of the single horizontal layer of the previous sections,
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uniform diagonal damping raises the response by a fixed
amount for all the wavelengths, while the second-derivative
regularization decays like k2 for the small wavenumbers (or
long wavelengths). It would appear that the second-derivative
regularization should be the preferred method because it can
be tailored to influence only the wavenumber components
close to the spectral minimum of the tomographic response.
However, we have found that it is difficult to predict the
point of minimum response for the general case of nonhor-
izontal layers and, therefore, both types of conditioning are
needed.

FIG. 15. Same as Figure 14, but with a stronger damping in the
tomography.

The tomographic scheme of Kosloff et al. (1996) was
tested with a single horizontal-layer example. The tomogra-
phy boundary conditions were of a constant update off the
ends of the model. Preservation of zero-offset times was in-
troduced through an additional term in the least-squares func-
tional. The correct model contained a rectangular velocity and
depth anomaly (Figure 10), where the zero-offset reflection
time was equal to 1 s at all CMP locations. The offset range of
the forward modeling was between 100 m and 1000 m, which is
also the layer depth. The initial model consisted of a uniform
layer of depth 1000 m and a velocity of 2000 m/s.
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At first, the tomography was run without preconditioning
with an update node spacing dx of 200 m. A comparison be-
tween the correct velocity and the reconstructed velocity is
shown in Figure 11. The figure shows that the tomography was
able to obtain the main feature of the anomaly. However, the
solution contains an oscilliation. Interestingly, the oscillation
wavelength is about 2400 m, which coincides with the pre-
dicted wavelength of the spectral minimum in the analysis of
the previous section (Figure 5). When the update node spacing
was increased to dx= 2000 m, the tomographic solution be-
came smoother, although it undershot and overshot the correct
result (Figure 11).

In the second stage, the single-layer test was repeated us-
ing the same parameters except that diagonal and second-
derivative preconditioning were added. The magnitude of
the preconditioning was determined empirically. Figure 12
compares the exact solution to the calculated solution for
dx= 200 m and dx= 1000 m. As the figure shows, the pre-
conditioning suppressed most of the oscillation. However, as
expected, some of the short-wavelength components of the so-
lution are missing. Further tests have indicated that the values
of the preconditioning parameters used in this example enable
comparable results to be obtained for interpolation node sep-
arations within the range of dx= 200 m and dx= 1000 m. Sim-
ilar values of the preconditioning parameters were used in the
examples in the following sections.

THE MULTILAYER CASE

For structures containing more than one layer, there are
more combinations of the velocities and layer thicknesses
which are difficult to resolve. This section evaluates the res-
olution for two models, each of which contained three layers.
The first model had a smooth velocity and layer thickness varia-
tions, whereas the second model contained isolated anomalies.
The tomographic algorithm of Kosloff et al. (1996) was used in
the tests.

In the first example (Figure 13), the velocity in the first layer
varied linearly between 2050 and 2000 m/s, and the layer thick-
ness varied linearly between 1025 and 1000 m. The velocity in
the second layer varied linearly between 2000 and 1950 m/s,
and the thickness varied linearly between 1000 and 975 m. The
velocity for the third layer was constant and equal to 4000 m/s,
and the interface depth was 3000 m. The initial model con-
tained constant velocities in the three layers of 2000, 2000,
and 4100 m/s, respectively, and constant thicknesses of 1000,
1000, and 1050 m, respectively. The offset-to-depth ratio in this
example was the one for three layers.

The tomographically reconstructed velocities for the three
layers are compared to the exact velocities in Figure 14.
Figures 14a and 14b for the first two layers show that starting
from an initial model with constant velocity, the tomography
was able to obtain the gradient in the velocity variation. The
discrepancy between the reconstruction and the exact model
can be attributed to edge effects, particularly for the deeper
layers and large offsets. For the third layer, the tomography
was able to bring down the initial velocity of 4100 m/s closer
to the correct value of 4000 m/s. However, the solution con-
tains small oscillations (±20 m/s), and the velocity is slightly
above the correct value. An increase in the damping of the
tomography suppresses the oscillations to some degree. For

example, Figure 15 presents results using the same parameters
as above except that the second-derivative smoothing term was
strengthened by a factor of four. The results show smaller os-
cillations and appear superior to those in Figure 14. However,
when using the stronger smoothing with models containing lo-
calized velocity anomalies, the response became overdamped.
As expected, there appears to be a clear trade-off between
resolution and smoothness.

The second multilayer example contained localized rectan-
gular velocity and depth anomalies in the first two layers, and a
uniform velocity in the third layer (Figure 16). The initial model
contained horizontal layers of respective thicknesses of 1000,
500, and 1025 m, and velocities of 2000, 3000, and 4100 m/s,
respectively. The forward modeling calculations were for an
offset-to-depth ratio of one for the three layers. The tomo-
graphically updated velocities for the three layers are com-
pared to the exact values in Figures 17a–c. The Figures show
that the tomography was able to find the anomalies in the first
two layers and was also able to bring the velocity in the third
layer close to the correct value. However, as in the previous
example, there are spurious oscillations.

An alternative approach to velocity analysis is to perform
the velocity updating in a layer stripping fashion, where first,
using the reflection data from the first layer, the velocity and
layer thickness for that layer are found. In the second stage, the
parameters of the second layer are found from its reflections
while keeping to determined parameters of the first layer fixed.
The process is then continued until all the layers of the model
have been determined. The results from the analysis of a

FIG. 16. Model configuration for the three-layer example with
localized anomalies.
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single-layer response apply for the evaluation of each step of
the process. It may seem that because the response of a single
layer is simpler than the multilayer response, this process would
be more accurate. However, repeating the velocity determina-
tion for the previous example using layer stripping shows that

FIG. 17. Comparison between the exact solution and the
calculated solution for the three-layer model with localized
anomalies. (a) First layer, (b) second layer, (C) third layer.

although the determined velocity for the first layer appears
somewhat smoother (Figure 18a), the determined velocity for
the second and third layers show the same type of oscilla-
tions which were present in the previous results. Moreover,
the results for the third layer (Figure 18c) are worse than the
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results of the velocity determination without layer stripping.
Furthermore, in many cases in real data, some of the shallow
reflections are of low quality. Layer stripping then encounters
further problems. The advantage of the nonlayer-stripping pro-
cedure is that part of the velocity determination of the shallow
layers is done from the reflections from the deeper horizons.

CONCLUSIONS

This work has shown that there are components of the slow-
ness and interface depth variations which are difficult to resolve
with typical reflection seismology experiments. The analysis of

FIG. 18. Same as Figure 17, but with the velocity analysis
performed in a layer-stripping fashion.

the response of a single horizontal layer in the Fourier domain
indicates that, with a maximum offset-to–layer-thickness ratio
of one, it is very difficult to determine variations of the subsur-
face parameters in the range of wavelengths around 2.4 layer
thicknesses. When the maximum offset is increased, the res-
olution slowly improves, and the wavelength at the point of
minimum resolution increases. However, very long offsets are
required to obtain good resolution at all wavelengths. For a
maximum offset-to–layer-thickness less than one, the ability
to resolve lateral variations in velocity becomes very ques-
tionable. These results qualitatively agree with the results
of Bickel (1990). Lack of resolution manifests itself in the
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presence of different subsurface models which explain the seis-
mic data equally well.

The single horizontal layer response was also analyzed us-
ing a least-squares tomographic scheme, originally designed
for nonhorizontal layers. Although this method differs from
the analysis in the Fourier domain, test results showed that
when no preconditioning is applied, the tomographic recon-
struction contains oscillations which have similar wavelengths
to the wavelength of the spectral minimum predicted by the
Fourier domain analysis. The addition of regularization to
the tomography suppresses the oscillations at the expense of
reduced resolution at the shorter wavelengths.

The tomographic scheme was applied to multilayered struc-
tures. Using horizontal initial models, we showed that the to-
mography with the selected regularization parameters was able
to recover the main features of subsurface anomalies. However
the solution contained some spurious noise which could only be
reduced at the expense of lowering the resolution. The conclu-
sion from these tests is that, with reflection seismology, only the
long wavelengths of the subsurface velocity variation can be re-
covered with confidence. It is anticipated that these conclusions
will be further strengthened when dealing with strongly later-
ally varying structures, where one can anticipate the presence
of other wavelength components with low resolution. We be-
lieve that the results of this work apply to all methods of veloc-
ity analysis from reflection data, and they are not limited to the
tomographic approach applied in this study. Moreover, single-
station analysis methods, such as hyperbolic analysis, should
have further difficulties since they do not account correctly for
the variation of the velocity in the vicinity of the analysis point.

We showed that performing the velocity analysis in a layer-
stripping fashion holds no significant advantages. Moreover
layer stripping may produce inferior results for the deeper lay-
ers. However, this work was concerned with small velocity er-
rors when the linearization of the tomography is valid. For

larger velocity and interface depth errors, it may be advanta-
geous to first determine the parameters in the shallow part of
the structure and then proceed to the deeper part. However, in
such a case, while determining the parameters of the deeper
layers, we still recommend allowing the parameters of the
shallow part of the section to change.

Analysis of the single-layer response suggests that 3-D ac-
quisition with multiazimuthal coverage has the potential to sig-
nificantly improve velocity and interface depth determination.
However, it is important to process the data in a manner which
preserves the azimuthal information.

Finally, to end the discussion on a more optimistic note, we
speculate that since the low-resolution parameter variations
are limited to specific wavelength components, the incorpora-
tion of other data or of prior geologic knowledge may eliminate
the uncertainty in the subsurface parameter determination.
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